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Abstract— The automation of substation equipment inspec-
tion is a pivotal development area within the power industry.
Traditional substation equipment inspection methods utilizing
instance segmentation models trained on specific dataset have
shown broad application, however, their generalization perfor-
mance is limited to specific scenes. To enhance the robustness
against intricate environments, we propose a two-stage instance
segmentation method based on visual foundation models. In
our work, the state-of-the-art object detector YOLOX and the
visual foundation model SAM are employed to integrate the
high-efficiency 2D detector with the general visual knowledge
powered by foundation models trained on large-scale datasets.
We utilize YOLOX to generate bounding box prompts which
are processed by the pruned and aligned visual foundation
model SimSAM to perform instance segmentation with 68.6 %
mAP on our validation dataset. The method’s effectiveness is
validated through extensive comparisons with different model
configurations and segmentation prompts, highlighting its ro-
bustness and potential for practical application in the domain
of substation equipment maintenance and inspection.

[. INTRODUCTION

The inspection of substation equipment is a critical task
that ensures the reliability and safety of the electrical power
grid. Traditionally, this process has been conducted manually
by trained personnel, which is fraught with challenges such
as labor intensity, safety risks, and potential inaccuracies due
to human error. Recently, the advent of unmanned inspection
methods has presented a significant improvement, offering
numerous advantages over traditional approaches, including
enhanced safety, reduced labor costs, and the ability to
perform inspections in hard-to-reach or hazardous areas.

The effectiveness of unmanned inspection systems heavily
relies on the precision of algorithmic detection and segmen-
tation capabilities. While conventional detection algorithms
have made strides in addressing these requirements, they
often fall short in terms of generalization performance,
particularly when dealing with complex scenes and diverse
equipment types. The recent rapid development of visual
foundation models has introduced a paradigm improvement
in the field, promising to overcome the generalization limita-
tions of traditional methods. Visual foundation models, with
their vast parameter space and sophisticated architectures,
are capable of capturing intricate patterns and relationships
within data, leading to improved detection and segmentation
performance. They offer the advantage of better general-
ization to a wide variety of scenarios and can adapt more
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Fig. 1. Examples of the substation equipment instance segmentation
inference result. The top images come from our substation equipment
dataset, and the bottom images are visualizations of inference using our
proposed method.

effectively to the unique challenges posed by substation
equipment inspection.

In this paper, we propose a novel approach that enhances
traditional detection models with the powerful capabilities
of the visual foundation model. Our method leverages the
YOLOX[4] model for generating bounding box prompts,
which are utilized by the visual foundation model, specif-
ically the SAMJ8], to achieve the instance segmentation
results shown in Fig.1. This combination has proven to yield
remarkable results in terms of detection and segmentation
accuracy, thereby enhancing the overall performance of un-
manned inspection systems.

In summary, our contributions to this work are shown as
follows:

o We introduce a comprehensive dataset of substation
equipment, annotated with polygon masks and class
labels, which captures the diversity and complexity of
real-world substation environments.

o We present a method pipeline that effectively inte-
grates YOLOX[4] for bounding box generation with the
SlimSAM]J2] model for instance segmentation, demon-
strating a data-efficient approach that requires signifi-
cantly less training data while maintaining high accu-
racy.

« We conduct extensive experiments to validate the effec-
tiveness of our proposed method, showcasing its superi-
ority over traditional detection models and highlighting
its potential for practical applications in the field of
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Ground Truth

Fig. 2.  Examples of the substation equipment dataset. Images were taken from different perspectives and under varying lighting conditions to simulate

the real-world application scene.

TABLE I
THE NAME, ABBREV, AND THE AMOUNT IN THE TRAINING
SET AND VALIDATION SET OF EACH cCATEGORY

Categories Abbrev  Train set  Val set
Insulator IYZ 33683 243
Circuit breaker QF 1788 8
Current transformer TA 1961 14
Arrester FV 2795 30
Disconnector QS 3460 31
Radiator SQR 1151 4
Bushing CM 8457 53
Transformer T 900 3
Voltage transformer TV 1895 15
Inductance L 535 7
Capacitor C 536 3

substation equipment inspection.

II. DATASET AND PREPROCESSING

The dataset of substation equipment consists of real scene
data captured by the State Grid of China, containing 7520
images from different electric power substations in China.
The captured scenes encompass various power equipment
that require special attention during inspection tasks, such
as insulators, circuit breakers, and so on. For detection
and instance segmentation tasks, the images were annotated
using a set of polygon masks with class labels. In our
dataset, 11 different categories of substation equipment are
specified. The category name, abbreviation, and the amount
of substation equipment in each category in the training set
and validation set are shown in Table I.

It can be seen that there is an obvious gap in the amounts
of instances in different categories, which is a common and
evident challenge in practical detection and segmentation
tasks. What’s more, to simulate inspection tasks in real-
world scenarios, the images encompass substation equipment
photographs captured from different perspectives and under
varying lighting conditions. A set of samples with images

and classified segmentation masks of our dataset are shown
in Fig. 2.

For the detection and instance segmentation tasks, la-
bel files in the dataset were preprocessed into the COCO
format[10] that is widely used. In detail, the segmentation
masks in polygon format with semantic labels were first con-
verted into binary masks. Then binary masks were encoded
into the COCO RLE format with their provided API, at the
same time, the bounding box and mask areas were calculated
and saved. This format is used to train both the detection
model and the segmentation visual foundation model.

III. METHOD

In this section, we separately introduce the detection
model to generate the bounding box prompts for the visual
foundation model and the compressed large visual foundation
model for segmentation which can be fitted on resource-
constrained devices. Our method pipeline is shown in Fig.3.

A. Bounding Box Prompts Generation

In this paper, we use YOLOX[4] as our powerful
bounding boxes prompts generator for substation equip-
ment. YOLOX[4] is a single-stage object detector based on
YOLOVS5[6], which has a light design and achieves high
performance in both academic benchmarks and industrial
applications. It uses a lightning convolution-based backbone
and FPN[9] to extract multi-scale image feature maps with
different sizes and channels. Then these multi-scale image
feature maps are sent into single-stage detect heads, which
have a decoupled design. Each decoupled head has three
independent convolutional branches, including Cls. branch,
Reg. branch, and IoU. aware branch. The entire network
model is shown in Fig.4. Specifically, it uses the anchor-
free design, the model directly predicts four values for each
object instance: two offsets (horizontal and vertical) from the
top-left corner of the grid cell, and the height and width of the
predicted bounding box. Similar to anchor-based detectors, a

570
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on August 14,2025 at 08:42:28 UTC from IEEE Xplore. Restrictions apply.



/

¥
v

\ Backbone

Bounding Box Prompts Generator

FPN

Box Prediction

(" Original SAM )
Image Encoder

h 4

Pruned
Image Encoder

«—o»

2 steps
prone & align

o9
\_ J

Fig. 3.

—Box Prompts

Instance Segmentation

Bounding Box
Prompts Based
Segmentor

The pipeline of our proposed method. Substation equipment images would flow into the bounding box prompts generator at the first. After the

SAM[8] are pruned and aligned within 2 steps, the same image and box prompts would be processed by bounding box prompts based segmentor to infer

the substation equipment instance segmentation results.

FPN w

-y EEEEEE
=
I Decoupled Head

[mm

Fig. 4. The structure of YOLOX[4]. Each feat at a different scale connects
with a decoupled head predicting bounding boxes.

scale range of grid cells is predefined to designate the feature
pyramid network (FPN)[9] level for each object. This helps
determine the appropriate level of granularity for detecting
objects of different sizes. Finally, composing the predicted
results of multi-scale level, we could use NMS[12] to figure
out final bounding box prompts.

B. Bounding Box Prompts Based Segmentation

We choose the prompt-based segmentation model SAM[8]
for next-step substation equipment detection. For accurate
mask generation, we use the substation equipment bounding
box coming from the last step, to be substation equipment
segmentation prompts. Bounding box prompts provide pre-
cise spatial information about the location and extent of
objects within an image. By using these detection boxes
as prompts, SAM[8] can focus mask prediction efforts
specifically within the regions of interest corresponding to
detected objects. This enables more accurate and refined
mask predictions by limiting the search space to relevant
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Fig. 5. An example of the accurate substation equipment prompts, inferred
by YOLOXI[4].

areas, reducing computational overhead, and improving seg-
mentation quality. Utilizing 2D detection boxes as prompts in
SAM[S] can streamline the segmentation process by reducing
the need for exhaustive pixel-wise computations across the
entire image. Focusing computational resources on regions
specified by detection boxes can improve efficiency without
sacrificing accuracy. The substation equipment bounding box
prompts are shown in Fig.5.

As a visual foundation model, SAM[8] was trained by
a published dataset. We could not use SAM[8] directly
to detect precise substation equipment. As Fig.6 shows,
the original SAM[8] could not realize true composition in
substation equipment. Because of the lack of substation
equipment in the published dataset, we should introduce
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Fig. 6. An example of the Segment Anything model inferencing sub-
station equipment. The original SAM[8] model could not realize the true
composition of substation equipment. The insulator, bushing, and current
transformer, located in (a) and (b), (c), and (d) respectively, are incorrectly
identified into sub-compositions.

substation equipment segmentation knowledge for SAM[8].

In this paper, we employ the SlimSAM[2] method pri-
marily serving as a data-efficient compression method for
the Segment Anything Model (SAMI[8]). It achieves su-
perior performance with significantly less training data by
introducing an alternate slimming framework and disturbed
Taylor pruning to effectively compress the model through
alternate pruning and distillation of distinct sub-structures
while addressing misalignment between pruning objectives
and training targets. This approach enhances knowledge in-
heritance and minimizes divergence from the original model,
resulting in substantial performance improvements while
reducing training data requirements.

IV. EXPERIMENTS
A. Implementation Details

1) Detection Model: In our experiment, we utilized the
mmdetection[ 1] library for the detection task with the follow-
ing configurations and settings. We employed the YOLOX[4]
model as the chosen detection model. The backbone network
was configured as CSPDarknet, while the neck structure
consisted of an FPN. The bounding box head was imple-
mented according to YOLOX[4]. Each component of the
model employed normalization configurations and activation
functions. The loss function consisted of cross-entropy loss,
IoU loss, and L1 loss, with different weights assigned to
each. Non-maximum suppression (NMS) was applied for
post-processing during testing.

Specifically, input data is preprocessed before being fed
into the model for training or inference. We randomly resize
images within the specified range (360 to 800 pixels) while
ensuring that the resulting size is divisible by 32, which is

a requirement for YOLOX[4] to downsample correctly, and
the augmentation will be applied every 10 iterations. This
introduces variations in scale, which can improve the model’s
robustness and generalization performance. We employ the
CSPDarknet as the backbone network, which could be easily
controlled by the deepen and widen factor to determine the
depth and width of the network, respectively. We specify the
kernel sizes parameter by (5, 9, 13), which is used in the
Spatial Pyramid Pooling (SPP)[5] module and helps capture
multi-scale information from feature maps. 2nd, 3rd, and
4th feature maps from the backbone will be used as input
to subsequent network modules and their output channels
are 128, 256, and 512. We employ PAFPN[11] to introduce
a more effective feature fusion mechanism, enabling better
contextual understanding and object localization across dif-
ferent scales in images, and the output channel is 128. We
employ Swish[13] as activate functions in our network. We
define the radius 0.25 around the center of the anchor box
within which a ground truth box is considered as a positive
match.

To improve the model’s ability to handle various ob-
ject appearances, sizes, orientations, and lighting conditions,
leading to more robust and accurate predictions, data aug-
mentation techniques were employed to enhance the diversity
and robustness of the training data. First, we employed
the Mosaic technique, which combines four images into a
single mosaic image, providing contextual information and
increasing the complexity of the training data. Next, we
applied random affine transformations to each mosaic image
including random rotations, translations, scaling, and flips.
To further enhance the diversity of the training data, we
performed MixUp, which blends pairs of mosaic images.

The detection model was trained for 300 epochs with batch
size 8 on a single NVIDIA GeForce RTX 4090.

2) Segment Anything Model: In our experiment, com-
mitting to better substation equipment segmentation perfor-
mance, we set the pruning ratio of SIimSAM by 50%. This
pruning ratio is particularly suitable for applications like
substation equipment segmentation, where high accuracy is
required, but data quantity is limited. Specifically, it is based
on the SAM-B architecture, which is a balanced version
of the original SAM[8] model in terms of the number of
parameters and computational efficiency. The model consists
of a series of Vision Transformer (ViT)[3] blocks and MLP
blocks, which are used for feature extraction from the input
images.

The model undergoes an initial pruning phase where
parameters are removed based on their importance scores.
This is done using a method called disturbed Taylor impor-
tance, which aligns the pruning criteria with the optimization
objectives of subsequent distillation. The pruning process is
focused on the image encoder part of the model, while the
original prompt encoder and mask decoder from SAM[8] are
retained.

After pruning, the model is refined through a distillation
process that aims to recover the performance lost due to
pruning. The distillation involves aligning the pruned model
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TABLE I
COMPARISON OF DIFFERENT DETECTION MODEL’S AVERAGE PRECISION IN VARIOUS OBJECT SIZE

Results of Each Category

Object Size | Model o7 —Gr—a—Fv Qs ™M T TV L C  mean
sl | YOLOXS [ 0497 - 057 0377 0488 004 - 055 00 040
YOLOX-X | 0.535 -  0.642 0453 0466 0236 - 0751 - - 0514

Vediom | YOLOXS | 0.678 051 0894 0698 0484 0578 0404 049 00 06 0534
YOLOX-X | 0.668 045 0835 0.726 0469 0639 0.601 0555 00 08 0574

Luge | YOLOXS | 0815 0707 0735 0876 0475 0765 06 0703 083 0767 0728
YOLOX-X | 0762 0743 0.894 0912 0611 0831 08 0752 086 0.883 0.805

0 YOLOXS | 0631 0671 0609 075 043 0639 0432 0525 0716 0711 0.620
YOLOX-X | 0.629 0721 0.786 0.782 0418 0711 0.624 0623 0712 0855 0.686

Original Images

Original SAM

Proposed Method

Fig. 7. Some examples of the instance segmentation results of the origin SAM([8] and our proposed method, are shown on the second line and third line
respectively. The original images are shown on the top line. Several examples show that our proposed method can better segment the substation equipment

in complex scenes.

with the original model at both the embedding and bottleneck
levels. We train SIimSAM using the SAM-B model, which
uses the ADAM][7] optimization algorithm with a batch size
of 4. The total training duration is 20 epochs, with the learn-
ing rate initialized at 1e~* and reduced by half if validation
performance does not improve for 4 consecutive epochs.
The model is trained on only less than 0.1% (7467 images)
of the substation equipment dataset, demonstrating its data
efficiency. The entire compression and training process of
SlimSAM is completed on a single Nvidia RTX 4090 GPU.

B. Evaluation Comparisons

1) Different detection model parameters: Firstly, we use
different CSPDarknet[14] parameters to train YOLOX][4], in-
cluding YOLOX-s and YOLOX-x. For YOLOX-s, we control

the deepen factor of the CSPDarknet parameter by 0.33,
which can affect the capacity and representational power of
the backbone network, and it would be multiplied by 3 then
rounded to determine the number of the Bottleneck block
within each CSPLayer. We control the width of the CSP-
Darknet parameter by 0.5, which can influence the number
of channels in the network’s convolutional layers, potentially
affecting its ability to capture and represent features at
different levels of abstraction, and it would be multiplied
by 64 to set the output dimension of the first convolutional
layer in the CSPDarknet.

For YOLOX-x, the network’s deepen factor is increased to
1.33 compared to the usual model. This implies that the num-
ber of layers in the network is multiplied. A higher deepen
factor typically allows the network to learn more complex
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representations, which can be beneficial for capturing finer
details in the substation equipment data. The network’s
widen factor is increased to 1.25, which refers to the number
of channels or filters in the convolutional layers, is increased.
A wider network can process more information in parallel,
which can improve the model’s ability to extract a richer
set of features from the input data. This can lead to better
performance, especially when dealing with high-resolution
images or complex scenes of substation equipment. The in
channels of PAFPN are increased by 320, 640, and 1280,
and out channels are increased by 320. The CSP blocks
are controlled by 4, which are designed to enhance feature
propagation. The experimental results are shown in TABLE
1L

2) Different segmentation prompts: In this work, we
experimented with two prompt-based substation equipment
instance segmentation approaches, including our proposed
method and the grid points-based method. Our proposed
method begins with the YOLOX[4] that identifies objects in
the image and generates a bounding box for each detected
object. The predicted bounding boxes serve as prompts.
Subsequently, the SAM[8] uses these bounding boxes as
input to focus on predicting the precise segmentation mask
within the box.

The grid points-based method divides the image into a
regular grid and predicts the instance segmentation mask
of the object at each grid point. The SAM[S8] utilizes the
grid points to produce segmentation mask prompts and
then infer the precise mask prediction. Specifically, the grid
points-based method also uses the SAM[8] model, while
sampling numbers of points along each side of the image
as segmentation mask prompts and then predicting final
substation equipment instance segmentation. For sampling
numbers of points, several parameters constructing a grid of
points to sample across the image are defined. We set the
sampling points number on one side of the image by 32,
which means we sample 1024 points within an image. The
grid points are normalized to the image dimensions and are
used as prompts for the SAM[8] model to predict instance
masks. For each grid point, the SAM[8] model uses it to
predict an instance mask. Mask predictions are filtered based
on the predicted IoU and stability score to ensure that only
high-quality masks are considered. We filter the final instance
segmentation mask by the predicted mask IoU threshold of
0.88 and stability score threshold of 0.9. Because of evenly
distributed grid point prompts throughout the image, the grid
points-based method can capture the object in the whole
picture. The instance segmentation results of these methods
are shown in Fig.7.

V. CONCLUSIONS

In conclusion, this paper has presented a novel approach
for the automation of substation equipment inspection, lever-
aging the integration of YOLOX][4] and SlimSAM models to
achieve high-precision instance segmentation. The proposed
method addresses the challenges posed by the complex
distribution of substation equipment across various scenarios

and limited data quantity conditions, which traditional de-
tection and segmentation algorithms struggle to overcome.
The proposed approach not only enhances the reliability
and safety of substation equipment inspections but also
paves the way for more efficient and accurate unmanned
substation equipment inspection systems. Future work could
explore further optimizations and integrations with other
powerful vision foundation models to push the boundaries
of automated substation equipment inspection technologies
even further.
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